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well as the survival mechanisms used under starvation conditions.
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Preface

Knowledge of the physiology and metabolism of prokaryotes under-
pins our understanding of the roles and activities of these organisms
in the environment, including pathogenic and symbiotic relation-
ships, as well as their exploitation in biotechnology. Prokaryotic
organisms include bacteria and archaea and, although remaining
relatively small and simple in structure throughout their evolutionary
history, exhibit incredible diversity regarding their metabolism and
physiology. Such metabolic diversity is reflective of the wide range of
habitats where prokaryotes can thrive and in many cases dominate the
biota, and is a distinguishing contrast with eukaryotes that exhibit a
more restricted metabolic versatility. Thus, prokaryotes can be found
almost everywhere under a wide range of physical and chemical
conditions, including aerobic to anaerobic, light and dark, low to
high pressure, low to high salt concentrations, extremes of acidity
and alkalinity, and extremes of nutrient availability. Some physiolo-
gies, e.g. lithotrophy and nitrogen fixation, are only found in certain
groups of prokaryotes, while the use of inorganic compounds, such
as nitrate and sulfate, as electron acceptors in respiration is another
prokaryotic ability. The explosion of knowledge resulting from the
development and application of molecular biology to microbial sys-
tems has perhaps led to a reduced emphasis on their physiology and
biochemistry, yet paradoxically has enabled further detailed analysis
and understanding of metabolic processes. Almost in a reflection of
the bacterial growth pattern, the number of scientific papers has
grown at an exponential rate, while the number of prokaryotic
genome sequences determined is also increasing rapidly. This pro-
duction of genome sequences for a wide range of organisms has made
an in-depth knowledge of prokaryotic metabolic function even more
essential in order to give biochemical, physiological and ecological
meaning to the genomic information. Our objective in writing this
new textbook was to provide a thorough survey of the prokaryotic
metabolic diversity that occurs under different conditions and in
different environments, emphasizing the key biochemical mechan-
isms involved. We believe that this approach provides a useful over-
view of the key cellular processes that determine bacterial and
archaeal roles in the environment, biotechnology and human health.
We concentrate on bacteria and archaea but, where appropriate, also
provide comparisons with eukaryotic organisms. It should be noted
that many important metabolic pathways found in prokaryotes also
occur in eukaryotes further emphasizing prokaryotic importance as
research models in providing knowledge of relevance to eukaryotic
processes.

This book can be considered in three main parts. In the first part,
prokaryotic structure and composition is described as well as the
means by which nutrients are transported into cells across
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membranes. Discussion of biosynthesis and growth is followed by
detailed accounts of glucose metabolism through glycolysis, the TCA
cycle, electron transport and oxidative phosphorylation, largely
based on the model bacterium Escherichia coli. In the second part,
the trophic variations found in prokaryotes are described, including
the use of organic compounds other than glucose, anaerobic fermen-
tation, anaerobic respiration, chemolithotrophy and photosynthesis.
In the third part, the regulation of metabolism through control of
gene expression and enzyme activity is covered, as well as the survi-
val mechanisms used by prokaryotes under starvation conditions.
This text is relevant to advanced undergraduate and postgraduate
courses, as well as being of use to teachers and researchers in micro-
biology, molecular biology, biotechnology, biochemistry and related
disciplines.

We would like to express our thanks to all those who helped and
made this book possible. We appreciate the staff of Academy
Publisher (Seoul, Korea) who re-drew the figures for the book, and
those at Cambridge University Press involved at various stages of the
publication process, including Katrina Halliday, Clare Georgy, Dawn
Preston, Alison Evans and Janice Robertson. Special thanks also go to
Diane Purves in Dundee, who greatly assisted correction, collation,
editing and formatting of chapters, and production of the index, and
Dr Nicola Stanley-Wall, also in Dundee, for the cover illustration
images. Thanks also to all those teachers and researchers in micro-
biology around the world who have helped and stimulated us
throughout our careers. Our families deserve special thanks for
their support and patience.

Byung Hong Kim
Geoffrey Michael Gadd



Introduction to bacterial
physiology and metabolism

The biosphere has been shaped both by physical events and by inter-
actions with the organisms that occupy it. Among living organisms,
prokaryotes are much more metabolically diverse than eukaryotes
and can also thrive under a variety of extreme conditions where
eukaryotes cannot. This is possible because of the wealth of genes,
metabolic pathways and molecular processes that are unique to
prokaryotic cells. For this reason, prokaryotes are very important in
the cycling of elements, including carbon, nitrogen, sulfur and phos-
phorus, as well as metals and metalloids such as copper, mercury,
selenium, arsenic and chromium. A full understanding of the com-
plex biological phenomena that occur in the biosphere therefore
requires a deep knowledge of the unique biological processes that
occur in this vast prokaryotic world.

After publication in 1995 of the first full DNA sequence of a free-
living bacterium, Haemophilus influenzae, whole genome sequences
of hundreds of prokaryotes have now been determined and many
others are currently being sequenced (www.genomesonline.org)).
Our knowledge of the whole genome profoundly influences all
aspects of microbiology. Determination of entire genome sequences,
however, is only a first step in fully understanding the properties of
an organism and the environment in which the organism lives. The
functions encoded by these sequences need to be elucidated to give
biochemical, physiological and ecological meaning to the informa-
tion. Furthermore, sequence analysis indicates that the biological
functions of substantial portions of complete genomes are so far
unknown. Defining the role of each gene in the complex cellular
metabolic network is a formidable task. In addition, genomes contain
hundreds to thousands of genes, many of which encode multiple
proteins that interact and function together as multicomponent
systems for accomplishing specific cellular processes. The products
of many genes are often co-regulated in complex signal transduction
networks, and understanding how the genome functions as a whole
presents an even greater challenge. It is also known that for a sig-
nificant proportion of metabolic activities, no representative genes
have been identified across all organisms, such activities being
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termed ‘orphan’ to indicate they are not currently assigned to any
gene. This also represents a major future challenge and will require
both computational and experimental approaches.

It is widely accepted that less than 1% of prokaryotes have been
cultivated in pure culture under laboratory conditions. Development
of new sequencing techniques has allowed us to obtain genomic
information from the multitudes of unculturable prokaryotic species
and complex microbial populations that exist in nature. Such infor-
mation might provide a basis for the development of new cultivation
techniques. Elucidation of the function of unknown genes through
a better understanding of biochemistry and physiology could ulti-
mately result in a fuller understanding of the complex biological
phenomena occurring in the biosphere.

Unlike multicellular eukaryotes, individual cells of unicellular
prokaryotes are more exposed to the continuously changing envir-
onment, and have evolved unique structures to survive under such
conditions. Chapter 2 describes the main aspects of the composition
and structure of prokaryotic cells.

Life can be defined as a reproduction process using materials
available from the environment according to the genetic information
possessed by the organism. Utilization of the materials available in
the environment necessitates transport into cells that are separated
from the environment by a membrane. Chapter 3 outlines transport
mechanisms, not only for intracellular entry of nutrients, but also for
excretion of materials including extracellular enzymes and materials
that form cell surface structures.

Many prokaryotes, including Escherichia coli, can grow in a simple
mineral salts medium containing glucose as the sole organic com-
pound. Glucose is metabolized through glycolytic pathways and the
tricarboxylic acid (TCA) cycle, supplying all carbon skeletons, energy
in the form of ATP and reducing equivalents in the form of NADPH
for growth and reproduction. Glycolysis is described in Chapter 4
with emphasis on the reverse reactions of the EMP pathway and
on prokaryote-specific metabolic pathways. When substrates
other than glucose are used, parts of the metabolic pathways
are employed in either forward or reverse directions. Chapter 5
describes the TCA cycle and related metabolic pathways, and energy
transduction mechanisms. Chapter 6 describes the biosynthetic
metabolic processes that utilize carbon skeletons, ATP and NADPH,
the production of which is discussed in the previous chapters. These
chapters summarize the biochemistry of central metabolism that is
employed by prokaryotes to enable growth on a glucose-mineral
salts medium.

The next five chapters describe metabolism in some of the
various trophic variations found in prokaryotes. These are the use
of organic compounds other than glucose as carbon and energy
sources (Chapter 7), anaerobic fermentation (Chapter 8), anaerobic
respiratory processes (Chapter 9), chemolithotrophy (Chapter 10) and
photosynthesis (Chapter 11). Some of these metabolic processes are
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prokaryote specific, while others are found in both prokaryotes and
eukaryotes.

Prokaryotes only express a proportion of their genes at any given
time, just like eukaryotes. This enables them to grow in the most
efficient way under any given conditions. Metabolism is regulated
not only through control of gene expression but also by controlling
the activity of enzymes. These regulatory mechanisms are discussed
in Chapter 12. Finally, the survival of prokaryotic organisms under
starvation conditions is discussed in terms of storage materials and
resting cell structures in Chapter 13.

This book has been written as a text for senior students at under-
graduate level and postgraduates in microbiology and related sub-
jects. A major proportion of the book has been based on review
papers published in various scientific journals including those listed
below:

Annual Review of Microbiology

Annual Review of Biochemistry

Current Opinion in Microbiology

FEMS Microbiology Reviews

Journal of Bacteriology

Microbiology and Molecular Biology Reviews (formerly Microbiology
Reviews)

Nature Reviews Microbiology

Trends in Microbiology.

The authors would also like to acknowledge the authors of the books
listed below that have been consulted during the preparation of
this book.
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Star Publishing Co.

Dawes, D. A. (1986). Microbial Energetics. Glasgow: Blackie.

Dawes, . W. & Sutherland, 1. W. (1992). Microbial Physiology, 2nd edn. Basic
Microbiology Series, 4. Oxford: Blackwell.

Gottschalk, G. (1986). Bacterial Metabolism, 2nd edn. New York: Springer-
Verlag.

Ingraham, J.L., Maaloe, O. & Neidhardt, F. C. (1983). Growth of the Bacterial Cell.
Sunderland, MA: Sinauer Associates Inc.

Mandelstam, J., McQuillin, K. & Dawes, 1. (1982). Biochemistry of Bacterial
Growth, 3rd edn. Oxford: Blackwell.
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Composition and structure
of prokaryotic cells

Like all organisms, microorganisms grow, metabolize and replicate
utilizing materials available from the environment. Such materials
include those chemical elements required for structural aspects of
cellular composition and metabolic activities such as enzyme regu-
lation and redox processes. To understand bacterial metabolism, it is
therefore helpful to know the chemical composition of the cell and
component structures. This chapter describes the elemental compo-
sition and structure of prokaryotic cells, and the kinds of nutrients
needed for biosynthesis and energy-yielding metabolism.

2.1 | Elemental composition

From over 100 natural elements, microbial cells generally only
contain 12 in significant quantities. These are known as major ele-
ments, and are listed in Table 2.1 together with some of their major
functions and predominant chemical forms used by microorganisms.

They include elements such as carbon (C), oxygen (O) and hydro-
gen (H) constituting organic compounds like carbohydrates.
Nitrogen (N) is found in microbial cells in proteins, nucleic acids
and coenzymes. Sulfur (S) is needed for S-containing amino acids such
as methionine and cysteine and for various coenzymes. Phosphorus
(P) is present in nucleic acids, phospholipids, teichoic acid and
nucleotides including NAD(P) and ATP. Potassium is the major inor-
ganic cation (K*), while chloride (C17) is the major inorganic anion.
K" is required as a cofactor for certain enzymes, e.g. pyruvate kinase.
Chloride is involved in the energy conservation process operated by
halophilic archaea (Section 11.6). Sodium (Na") participates in sev-
eral transport and energy transduction processes, and plays a crucial
role in microbial growth under alkaline conditions (Section 5.7.4).
Magnesium (Mg ") forms complexes with phosphate groups including
those found in nucleic acids, ATP, phospholipids and lipopolysacchar-
ides. Several microbial intracellular enzymes, e.g. monomeric alkaline
phosphatase, are calcium dependent. Ferrous and ferric ions play a
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Table 2.1. | Major elements found in microbial cells with their functions and predominant chemical forms

used by microorganisms

Atomic Chemical forms used

Element  number by microbes Function

C 6 organic compounds, CO, CO, major constituents of cell material
in proteins, nucleic acids, lipids,
carbohydrates and others

O 8 organic compounds, CO,, H,O, O,

H | organic compounds, H,O, H;

N 6 organic compounds, NH4+, NO; ™, N,

S 16 organic sulfur compounds, SO4°~, proteins, coenzymes

HS—, S° 5,052

P I5 HPO4*~ nucleic acids, phospholipids, teichoic
acid, coenzymes

K 19 K+ major inorganic cation, compatible
solute, enzyme cofactor

Mg 12 Mg** enzyme cofactor, bound to cell wall,
membrane and phosphate esters
including nucleic acids and ATP

Ca 20 Ca”" enzyme cofactor, bound to cell wall

Fe 26 Fe’" Fe’™ cytochromes, ferredoxin,
Fe-S proteins, enzyme cofactor

Na Il Na™* involved in transport and energy
transduction

cl |7 cr~ major inorganic anion

crucial role in oxidation-reduction reactions as components of elec-
tron carriers such as Fe-S proteins and cytochromes.

In addition to these 12 major elements, others are also found
in microbial cells as minor elements (Table 2.2). All the metals listed
in Table 2.2 are required for specific enzymes. It is interesting to
note that the atomic number of tungsten is far higher than that
of the other elements and that this element is only required in
rare cases.

2.2 | Importance of chemical form

2.2.1 Five major elements

The elements listed in Tables 2.1 and 2.2 need to be supplied or be
present in the chemical forms that the organisms can use. Carbon
is the most abundant element in all living organisms. Prokaryotes
are broadly classified according to the carbon sources they use:
organotrophs (heterotrophs) use organic compounds as their carbon
source while CO, is used by lithotrophs (autotrophs). These groups



2.2 IMPORTANCE OF CHEMICAL FORM | 9

Table 2.2. | Minor elements found in microbial cells with their functions and predominant chemical form
used by microorganisms

Atomic Chemical form

Element number used by microbes Function

Mn 23 Mn** superoxide dismutase, photosystem Il

Co 27 Co?t coenzyme B,

Ni 28 Ni+ hydrogenase, urease

Cu 29 Cu*t cytochrome oxidase, oxygenase

Zn 30 Zn*t alcohol dehydrogenase, aldolase, alkaline phosphatase,
RNA and DNA polymerase, arsenate reductase

Se 34 SeO5”~ formate dehydrogenase, glycine reductase

Mo 42 MoQ4*~ nitrogenase, nitrate reductase, formate dehydrogenase,
arsenate reductase

W 74 WO, formate dehydrogenase, aldehyde oxidoreductase

are divided further according to the form of energy they use: chemo-
trophs (chemoorganotrophs and chemolithotrophs) depend on che-
mical forms for energy while phototrophs (photoorganotrophs and
photolithotrophs) utilize light energy (‘organo’ refers to an organic
substance while ‘litho’ refers to an inorganic substance).

Nitrogen sources commonly used by microbes include organic
nitrogenous compounds such as amino acids, and inorganic forms
such as ammonium and nitrate. Gaseous N, can serve as a nitrogen
source for a limited number of nitrogen-fixing prokaryotes. Nitrogen
fixation is not known in eukaryotes. Some chemolithotrophs can use
ammonium as their energy source (electron donor, Section 10.2)
while nitrate can be used as an electron acceptor by denitrifiers
(Section 9.1).

Sulfate is the most commonly used sulfur source, while other
sulfur sources used include organic sulfur compounds, sulfide, ele-
mental sulfur and thiosulfate. Sulfide and sulfur can serve as electron
donors in certain chemolithotrophs (Section 10.3), and sulfate and
elemental sulfur are used as electron acceptors and reduced to sulfide
by sulfidogens (Section 9.3).

222 Oxygen

Oxygen in cells originates mainly from organic compounds, water or
CO,. Molecular oxygen (0,) is seldom used in biosynthetic processes.
Some prokaryotes use O, as the electron acceptor, but some cannot
grow in its presence. Thus, organisms can be grouped according to
their reaction with O, into aerobes that require O,, facultative anae-
robes that use O, when it is available but can also grow in its absence,
and obligate anaerobes that do not use O,. Some obligate anaerobes
cannot grow and/or lose their viability in the presence of O, while
others can tolerate it. The former are termed strict anaerobes and the
latter aerotolerant anaerobes.



10 COMPOSITION AND STRUCTURE OF PROKARYOTIC CELLS

Table 2.3. | Common growth factors required by prokaryotes and their major function

Growth factor

Function

p-aminobenzoate
Biotin
Coenzyme M
Folate
Hemin
Lipoate
Nicotinate
Pantothenate
Pyridoxine
Riboflavin
Thiamine
Vitamin B>
Vitamin K

part of tetrahydrofolate, a one-carbon unit carrier
prosthetic group of carboxylase and mutase
methyl carrier in methanogenic archaea

part of tetrahydrofolate

precursor of cytochromes and hemoproteins
prosthetic group of 2-keto acid decarboxylase
precursor of pyridine nucleotides (NAD™, NADP™)
precursor of coenzyme A and acyl carrier protein
precursor of pyridoxal phosphate

precursor of flavins (FAD, FMN)

precursor of thiamine pyrophosphate

precursor of coenzyme B,

precursor of menaquinone

2.2.3 Growth factors

Some organotrophs such as Escherichia coli can grow in simple media
containing glucose and mineral salts, while others, like lactic acid
bacteria, require complex media containing various vitamins, amino
acids and nucleic acid bases. This is because the latter organisms cannot
synthesize certain essential cellular materials from only glucose and
mineral salts. These required compounds should therefore be supplied
in the growth media: such compounds are known as growth factors.
Growth factor requirements differ between organisms with vitamins
being the most commonly required growth factors (Table 2.3).

2.3 ‘ Structure of microbial cells

Microorganisms are grouped into either prokaryotes or eukaryotes
according to their cellular structure. With only a few exceptions,
prokaryotic cells do not have subcellular organelles separated from
the cytoplasm by phospholipid membranes such as the nuclear and
mitochondrial membranes. Organelles like the nucleus, mitochon-
dria and endoplasmic reticulum are only found in eukaryotic cells.
The detailed structure of prokaryotic cells is described below.

2.3.1 Flagella and pili
Motile prokaryotic cells have an appendage called a flagellum (plural,
flagella) involved in motility, and a similar but smaller structure, the
fimbria (plural, fimbriae). Fimbriae are not involved in motility and
are composed of proteins.

The bacterial flagellum consists of three parts. These are a basal
body, a hook and a filament (Figure 2.1). The basal body is embedded
in the cytoplasmic membrane and cell surface structure and
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connected to the filament through the hook. In Gram-negative bac-
teria the basal body consists of a cytoplasmic membrane ring, a
periplasmic ring and an outer-membrane ring through which the
central rod passes. The diameter of the rings can be 20-50nm
depending on the species. The cytoplasmic ring of the basal body is
associated with additional proteins known as the Mot complex. The
Mot complex rotates the basal body with the entire flagellum con-
suming a proton motive force (or sodium motive force). The cytoplas-
mic membrane ring is therefore believed to function as a motor with
the Mot complex. A more detailed description of motility is given in
Section 12.2.11. In addition to the Mot complex, the basal body is
associated with an export apparatus through which the building
blocks of the filament are transported.

The hook connects the central rod of the basal body to the fila-
ment and is composed of a single protein called the hook protein. The
filament, with a diameter of 10-20 nm, can be dissolved at pH 3-4
with surfactants to a single protein solution of flagellin. The mole-
cular weight of flagellin varies from 20 to 65 kD depending on the
bacterial species. The hook and the filament are tube-shaped and
the flagellin moves through the tube to the growing tip of the fila-
ment. The tip of the filament is covered with filament cap protein.
Flagellin can be exported to the medium in mutants defective in
expression of this protein.

m The structure of

the flagellum in Gram-
negative bacteria.

(. Bacteriol. 180:1009—1022, 1998)

Three rings of the basal body are
embedded in the cytoplasmic
membrane, murein layer and outer
membrane. The outer filament is
connected to the basal body
through th